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Abstract 

Spatial distances are the main tools used for data matching and control 
quality. This paper describes new measures adapted to sinuous lines to 
compute the maximal and average discrepancy: Discrete Fréchet distance 
and Discrete Average Fréchet distance. Afterwards, a global process is de-
fined to automatically handle two sets of lines. The usefulness of these dis-
tances is tested, with a comparison of coastlines. The validation is done 
with the computation of three sets of coastlines, obtained respectively from 
SPOT 5 orthophotographs and GPS points. Finally, an extension to Digital 
Elevation Model is presented. 
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1 Introduction 

Computing the distance between two objects is a basic tool of geo-
graphic information systems. The most commonly used distance is the 
Euclidean distance (dE) between two points. Others geometries (line and 
area in a two dimensional Cartesian system) need additional measures. In 
daily life, the notion of distance stand for the minimal effort required to 
reach one place from another. For example, the minimal distance between 
a pipeline and a river is the Euclidean distance between the two closest 
points from the river and the pipeline. Mathematically, a distance verifies 
three properties: non-negative, symmetry, triangle inequality. Thus, mini-
mal distances that measure the distance between the closest points of ge-
ometries, can be completed by other distances like average distances or 
maximal distances.  These lasts measure the average or maximal Euclidean 
distance between points of both geometries. 

 
Maximal and average distances are useful to control or match data from 

different datasets. For example, in a quality control, they give the discrep-
ancy between the encoded location and the location as defined in the speci-
fication (Veregin 1999). Likewise during the matching process, those 
measures permit to identify sets of data representing the same real world 
phenomenon in different data sets (Devogele et al. 1996). 

Two different maximal distances are employed to calculate the maximal 
gap between lines: the Hausdorff distance and the Fréchet distance. The 
Hausdorff distance is the most popular maximal distance between two 
lines (L1, L2) (Deng et al. 2005) (Alt and Godau 1995). The Hausdorff dis-
tance (dH) is defined as follows: 
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A line is an ordered set of points. Unfortunately, the Hausdorff distance 

does not take into account this property. Two lines can have a small dH, 
without being similar each other at all. The inconvenient of the Hausdorff 
distance is the computation of Euclidean distance between closer points 
and not between homologous points (points, which can be visually 
matched). Hence, Hausdorff distance can not be used for sinuous lines. For 
this kind of lines, the Fréchet distance is more appropriated (Alt and Gadau 
1995).  

In the maritime context, the majority of the lines, like coastlines or isoli-
nes, used for making studies, are sinuous. The aim of this paper is to detail 
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how calculate the Fréchet distance, measure the average discrepancy for 
those kind of lines, and illustrate the result with a comparison between 
coastlines. This last part is realised thanks to the implementation of new 
methods based on Average Fréchet distance. 

The remainder of this paper is as follows. Section 2 describes the dis-
crete Fréchet distance which is a good approximation of the Fréchet dis-
tance. In section 3, this discrete distance is extended to introduce an aver-
age linear distance: the average Fréchet distance. Moreover it also explains 
how to compute this measure. A global process defined to match homolo-
gous objects from two datasets is proposed in section 4. Section 5 illus-
trates this matching process and these two distances by a real example of 
quality control on coastlines datasets. Related works on digital elevation 
model are described and discussed in section 6 and finding are summarized 
in section7.  

2 Discrete Fréchet distance 

The Fréchet distance is the maximal distance between two oriented 
lines. Each oriented line is equivalent to a continuous function f: [a, a']→V 
(g: [b, b']→V) where a, a', b, b' ∈ ℜ, a < a' (b<b') and (V, d) is a metric 
space. dF denotes their Fréchet distance defined as follows: 
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Let us give an illustration of the Fréchet distance: a man is walking with 
a dog on a leash. This man is walking on the one curve, the dog on the 
other one. Both may vary their speed, but backtracking is not allowed. 
Then the Fréchet distance of the curves is the minimal length of a leash 
that is necessary. The Fréchet method has the advantage of computing dis-
tances only on homologous points and not between closest points as for the 
Hausdorff distance. 

 
Eiter and Mannila (1994) gave an approximation: the discrete Fréchet 

distance (ddF) that computes in time O(n m). L1 and L2 are interpreted as 
two oriented finite sets of points: <L1.1…L1.n> and <L2.1...L2.m>. ddF is the 
minimal length of leash such as a way from the pair of beginning points 
(L1.1,L2.1) to the pair of ending points (L1.n,L2.m) is possible. The path gives 
an ordered set of (L1.i,L2.j) such as the following pair of (L1.i,L2.j) is one of 
these three pairs:  
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− (L1.i+1,L2.j+1) man and dog are walking,  
− (L1.i+1,L2.j) only the man is. 
− (L1.i,L2.j+1) only the dog is. 

 
These sets of points include end points of line segments (vertices). Some 
points on a line segment can also be integrated by resampling these sets. 

ddF is a good estimation of dF because the approximation is limited by 
the maximal distance between two consecutive points (LengthMaxSeg) 
(Eiter and Mannila 1994):  

dF(L1, L2) ≤ ddF (L1, L2) ≤ dF(L1, L2) + LengthMaxSeg (3) 

In order to limit this approximation to ε, a resampling can be applied to 
both lines. 

 
The discrete Fréchet between L1 and L2 can be computed recursively as 

follows:  
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<L1.1…L1.n-1> and <L2.1...L2.m-1> represent lines. Hence, it is possible to 

recursively apply this ddF process with parameters: <L1.1…L1.n-1>, 
<L2.1...L2.m-1>. This process is terminated when the two lines are reduced to 
two single points (<L1.1>, <L2.2>). 

0
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4

0 1 2 3 4 5 6 7 8 9 10

line1

line2

 
Fig. 1. Example of a couple of lines 
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The example presented in Fig. 1, illustrates the computing of the dis-
crete Fréchet distance. The line 1 (L1) is composed by 8 vertices (L1.1 to 
L1.8) and the line 2 (L2) is composed by 7 vertices (L2.1 to L2.7). 

The computing of the two matrices replaced the recursive process. The 
dimension of these two matrices is n × m (see table 1), where n and m are 
the number of vertices of L1 and L2. These matrices are:  
− The matrix of Euclidean Distance (MD). The value of the cell MDi,j is 

the distance between L1.i,L2.j. 
− The Fréchet matrix (FM) which allows to calculate iteratively the Fré-

chet distance (Eiter et Mannila 94).  The formula to compute MFi,j is : 

MFi,j = max (dE(L1.i,L2.j), min(MFi-1,j , MFi,j-1 , MFi-1,j-1)) (5) 

The discrete Fréchet distance is the value of MFn,m. Table 1 gives the 
ddF between the two lines of figure 1: 1.8. ddF is equal to the Euclidean dis-
tance between L1.2 and L2.2. These two points are homologous. For these 
two lines, the Hausdorff distance is smaller and is not significant in term of 
matching.  

Table1 present a simple sample. The partial discrete Fréchet distance 
(dpdF), with two smaller matrices (7×8) are computed in this table. If a re-
sampling is processed with LengthMaxSeg equal to 0.1, two matrices 
(107×129) are computed and dpdF is equal to 1.2.  

Table 1. Matrix of Euclidean Distance and Fréchet Matrix for lines of figure 1. 

L1.i.x 0.2 1.5 2.3 2.9 4.1 5.6 7.2 8.2
L1.i.y 2 2.8 1.6 1.8 3.1 2.9 1.3 1.1

L2.j.x L2.j.y 1 2 3 4 5 6 7 8
0.3 1.6 1 0.41 1.70 2.00 2.61 4.09 5.46 6.91 7.92
3.2 3.4 2 3.31 1.80 2.01 1.63 0.95 2.45 4.52 5.50

3.8 1.8 3 3.61 2.51 1.51 0.90 1.33 2.11 3.44 4.46

5.2 3.1 4 5.12 3.71 3.26 2.64 1.10 0.45 2.69 3.61
6.5 2.8 5 6.35 5.00 4.37 3.74 2.42 0.91 1.66 2.40

7 0.8 6 6.91 5.85 4.77 4.22 3.70 2.52 0.54 1.24
8.9 0.6 7 8.81 7.72 6.68 6.12 5.41 4.02 1.84 0.86

1 2 3 4 5 6 7 8
1 0.41 1.70 2.00 2.61 4.09 5.46 6.91 7.92
2 3.31 1.80 2.01 2.00 2.00 2.45 4.52 5.50
3 3.61 2.51 1.80 1.80 1.80 2.11 3.44 4.46
4 5.12 3.71 3.26 2.64 1.80 1.80 2.69 3.61
5 6.35 5.00 4.37 3.74 2.42 1.80 1.80 2.40
6 6.91 5.85 4.77 4.22 3.70 2.52 1.80 1.80
7 8.81 7.72 6.68 6.12 5.41 4.02 1.84 1.80

Matrix of Euclidian distance between (L1.i, L2.j) 

 Fréchet Matrix
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New Measures derived from discrete Fréchet distance are introduced in 
(Devogele 2002):  
− The partial discrete Fréchet distance (dpdF). This measure is useful to 

match a line L1 with a part of another line L2. dpdF detects the partial 
homologous line < L2.begin…L2.end > and computes dpdF. dpdF is equal to 
ddF(L1, < L2.begin…L2.end >). Fig. 2a shows a case where the computing of 
dpdF is necessary.  

− The discrete Fréchet distance between 2 polygon borderlines. The proc-
ess defines a function T to translate polygon borderlines P1 and P2 into 
lines L1 and L2 such as the dFd between L1 and L2 is minimal. This proc-
ess can also inverse the ordering of points. For example, ddF between the 
two polygon borderlines of Figure 2b can be measured. No partial dis-
crete Fréchet distance between 2 polygons borderlines are definied. 

− The partial discrete Fréchet distance (dpdF) between a line L1 and a part 
of polygon borderlines P2. This measure is a mix of the two first meas-
ures. Figure 2c shows an example where the dpdF can be computed be-
tween a line and a polygon borderline. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Examples of interesting pairs of geometries for the computation of measure 
derived from the Fréchet distance 

3 Average Fréchet distance 

A new distance is defined from discrete Fréchet distance: the average 
Fréchet distance (daF). daF is the average Euclidean distance between points 
of pairs, which is based on the minimum path (MP).  

As pre-processing, the path between pairs of points (L1.1, L2.1) and (L1.n, 
L2.m) is computed. This one is MP, compatible with discrete Fréchet dis-
tance.  Several paths of the man and the dog with a length of leash equal to 

(a) (b) (c)(a) (b) (c)
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Fréchet distance are possible. MP is the one where the man and the dog 
walk one their curves but choose to be as closer as possible. The two ma-
trices MD and FM and an inferior or equal (<=) operation between two 
pair of real numbers, are used to compute MP.  

This operation <= is defined as follow: 

(a,b) and (c,d) ∈ ℜ2 
(a,b) <= (c,d)  if a < c or if a = = c and b<=d 

(6) 

The minimal path is constructed by backtracking through the matrix. So 
the last pair (L1.n, L2.m) is added, while the previous one look for pair help 
to <= operation. For (L1.i, L2.j), three previous candidate pairs are possible: 
(L1.i-1, L2.j-1), (L1.i-1, L2.j), (L1.i, L2.j-1). In order to chose the previous pairs of 
points, an associated pairs of real Ci,j is defined, where Ci,j is equal to 
(FM(L1.i,L2.j), MD(L1.i,L2.j)). The candidate pair, where the associated 
pair of real is inferior or equal to the two other real pair, is chosen. This 
construction is finished when i and j equal to 1.The algorithm is given by 
Fig. 3. 

 

Last couple of points is (n,m)

Init i = n, j = m

Ci-1, j-1 <= min (Ci-1, j ,Ci, j-1 )

Previous couple of 

points is  (i-1, j-1)

i = i-1, j = j-1

Ci, j-1 <= Ci, j-1

Previous couple of 

points is  (i, j-1)

i = i, j = j-1

Previous couple of 

points is  (i-1, j)

i = i-1, j = j

i == 1 and j == 1 

The path of couples 
of points is full

Ci, j =(FM(L1.i,L2.j), MD(L1.i,L2.j))

Y N

Y N

Y

N

Last couple of points is (n,m)

Init i = n, j = m

Ci-1, j-1 <= min (Ci-1, j ,Ci, j-1 )

Previous couple of 

points is  (i-1, j-1)

i = i-1, j = j-1

Ci, j-1 <= Ci, j-1

Previous couple of 

points is  (i, j-1)

i = i, j = j-1

Previous couple of 

points is  (i-1, j)

i = i-1, j = j

i == 1 and j == 1 

The path of couples 
of points is full

Ci, j =(FM(L1.i,L2.j), MD(L1.i,L2.j))

Y N

Y N

Y

N

 
Fig. 3. Algorithm for computing the minimal path (MP) 

In the example of Fig. 1, the minimal path is represented by the pairs of 
real in the grey cells of Table 2.  After added the last couple (L1.7, L2.8), the 
previous couple (L1.6, L2.7) is chosen because FM(L1.6,L2.7) is inferior or 
equal to both FM(L1.7, L2.7) and FM(L1.6, L2.8). Indeed (1.80, 0.54) is infe-
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rior or equal to (1.84, 1.84) and (1.80, 1.24). This process is reused until i 
and j equal 1. So the minimal path is the order set of nine couples: (L1.1, 
L2.1), (L1.2, L2.2), (L1.3, L2.3), (L1.3, L2.4), (L1.4, L2.5), (L1.4, L2.6), (L1.5, L2.6), 
(L1.6,L2.7) , (L1.7,L2.8). Fig 4. shows couples of (L1.i, L2.j) associated with 
minimal path. Points from pairs are homologous.  

Table 2. Minimal path from (L1.1, L2.1) to (L1.n, L2.m) is defined by selecting the 
couple of real in grey cells. In cell i, j, the first number is FM(L1.i, L2.j) and the 
second one is MD(L1.i, L2.j) 

1 0.41 0.41 1.70 1.70 2.00 2.00 2.61 2.61 4.09 4.09 5.46 5.46 6.91 6.91 7.92 7.92
2 3.31 3.31 1.80 1.80 2.01 2.01 2.00 1.63 2.00 0.95 2.45 2.45 4.52 4.52 5.50 5.50
3 3.61 3.61 2.51 2.51 1.80 1.51 1.80 0.90 1.80 1.33 2.11 2.11 3.44 3.44 4.46 4.46
4 5.12 5.12 3.71 3.71 3.26 3.26 2.64 2.64 1.80 1.10 1.80 0.45 2.69 2.69 3.61 3.61
5 6.35 6.35 5.00 5.00 4.37 4.37 3.74 3.74 2.42 2.42 1.80 0.91 1.80 1.66 2.40 2.40
6 6.91 6.91 5.85 5.85 4.77 4.77 4.22 4.22 3.70 3.70 2.52 2.52 1.80 0.54 1.80 1.24
7 8.81 8.81 7.72 7.72 6.68 6.68 6.12 6.12 5.41 5.41 4.02 4.02 1.84 1.84 1.80 0.86

1 2 3 4 5 6 7 8

 
 
Other processes have been described to define others minimal paths.  In 

order to reconstruct three-dimensional solid from serial sections, Fuchs et 
al. (1977) propose to find the minimum cost cycles in a directed toroidal 
graph. To compute the minimum cost cycles, the matrix of Euclidean dis-
tance is transformed into a graph and a Dijkstra's Algorithm (Dijkstra 59) 
is employed to find the shortest path from the vertex (L1.i, L2.j) to the ver-
tex (L1.n, L2.m).  

 
 
 
 
 
 
 
 
 
 

Fig. 4. Couple of (L1.i,L2.j) of the minimal path represented by dot lines 

This method was translated in other domains such as 2D objects morph-
ing (Sederberg and Greewood 1992). These methods minimize the sum of 
Euclidean distances between the points of pairs.  Thus, a large distance can 
be chosen if the other distances are small. For computing average distance, 
MP has the advantage over these last paths to not select pair of points with 
large distance.  

line1

line2

couple

line1line1

line2line2

couplecouple
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A few softwares (TCI 2005) (Geomod 2005) also employ list of pairs of 
homologous points as pre-processing for rubber-sheeting. Nevertheless, 
these pre-processing are semi-automatic and each point can only appear in 
one couple. 

The average Fréchet distance (daF) used the MP. In the example of 
Fig. 1, the daF is equal to 0.95 and with a resampling pre-process with 0.1 
as LengthMaxSeg, daF is equal to 0.51. Table 3 complete the example, 
showing that resampling is necessary to obtain a value for dFd closed to a 
value of dF. Moreover the approximation is inferior to the one of 
LengthMaxSeg.  

Table 3. ddF and daF computed with different values for LengthMaxSeg 

 without 1 0.1 0.01 0.001 
ddF 1.8028 1.2260 1.2015 1.2012 1.2012 
daF 0.9524 0.5843 0.5116 0.5030 0.4997 

 
The average Fréchet distance is an accurate measure to match data, to 

control quality and to merge data. For quality control, the daF with resam-
pling, is an appropriate measure of the average discrepancy of lines what-
ever sinuosity. 

4 Global process 

The previous methods allow to compute measures (ddF and daF) between 
homologous lines but a global process is required to work with sets of 
lines. Among all couple of lines, the program selects pair of lines: L1 from 
the first set and  L2 from the second set as the distance between them could 
be inferior to a maximal distance (MaxDist). This process is divided in 
three steps (Fig. 6). 

For the first step, the process makes a query on the line’s “open” attrib-
ute to distinguish three different cases for matching:  

o total or partial matching between open lines, 
o partial matching between open line and a close one, 
o total matching between close lines. 

For the second step, the process determines if lines can be homologous. 
This step used two bounding-boxes for each line (shows Fig 5.): 
− BBi: The bounding-box of Li: BBi.  
− BBEi: The enlarged bounding-box of Li. This rectangle is the BBi 

enlarged to contain all points that distance is inferior to MaxDist to BBi. 
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BB
BBE

BB
BBE

 
Fig. 5. Bounding-box (BB) and enlarged bounding box (BBE) of one line 

If the bounding-box of L1 is included in the Enlarge bounding-box of L2, 
consequently the Fréchet distance between those two lines can be inferior 
to the MaxDist previously defined. Hence there is a real probability for 
these lines to be homologous. 
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Fig. 6. Global process algorithm for each pair of (L1, L2)  

The most common and tricky case is when a line is included in the 
enlarge bounding-box of another (Fig. 6, case (b) or (c)) but the reverse is 
false. This means that lines are homologous but one is shorter, a partial 
matching process between them is computed. If the reverse is true (Fig. 6, 
case (a)), the two partial Fréchet distances are calculated (dpdF(L1,L2), 
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dpdF(L2,L1) and the minimal distance is kept. The total matching is consid-
ered as a sub-set of a partial matching.  

In the case of a partial matching between one open line and one close 
line (Fig. 6, case (d) or (e)), the close line is cut according to the open line, 
then the process calculates the Fréchet distance. 

For two close lines (Fig. 6, case (f)), if one BB is include in other BBE, 
the discrete Fréchet distance between two polygons borderlines is com-
puted. 

Finally the global process selects only the homologous lines when their 
Fréchet distances are inferior to MaxDist. The result is a set of pairs of 
matching lines with their Fréchet distances (average and discrete) and a list 
of homologous points. 

5 Example of Coastline Matching Process 

Within the framework of CNES-IFEN (French space agency and French 
environmental Institute) littoral monitoring, Le Berre et al (2004) has 
tested the capabilities of SPOT 5 data as a relevant tool for coastal zone 
mapping and coastline updating. The aim of the project was to assess the 
potentialities of a high resolution sensor (satellite SPOT 5) to delineate a 
reference coastline used in many coastal applications like offshore dy-
namic monitoring, protection works against sea erosion or coastal land-
cover mapping. 

In addition to their visual interpretation, the measure derives from Fré-
chet distance complete the study by giving a quantitative evaluation of the 
distance between different digitized coastlines. 

The shoreline is still an ambiguous concept despite a common use as a 
reference boundary between sea and land. Indeed, a gradual change on 
both sides and a permanent evolution during time don’t allow to define an 
accurate and permanent boundary. The coastline is defined by IHO (Inter-
national Hydrographic Organization, 2005) as the line where shore and 
water meet. Although the terminology of coasts and shores is rather con-
fuse, shoreline and coastline are generally used as synonymous. 
For marine application, the coastline is defined as the coast limit reached 
by the highest level of water (high seasonal tide). For the SHOM (French 
Marine Hydrographic and Oceanographic service) or Ifremer (French Insti-
tute for marine research) it is the conventional limit of the coastal domain 
at the neighbourhood of the High water line (Coastchart project, 2004). A 
theoretical definition could be either the highest astronomical tide or the 
extreme level high water limit on a period from 10 years. 
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From another point of view, one of geomorphological definitions is 
“morphological discontinuity area where the sea reaches the coast”. Thus 
using sedimentary, morphological and botanical features, it’s possible to 
avoid the problem of tide and therefore to use remote sensing data to map 
the coastline.  

This last definition is chosen to digitize the shoreline from SPOT and 
orthophotographs data using together vegetation limits on cliffs, sand 
dunes and schorres, the foot sand dune, the erosion slope, the beach vege-
tation boundary, or the high water spring tide mark.  

5.1 Datasets and methodology 

The site of the experimentation is located in the North-West of Brittany 
(France). It has been chosen according to the availability of reference data-
sets along with its coastline diversity: cliffs of various heights and rocks 
(soft or hard), beaches and sand dunes, tidal flats, estuaries, and artificial 
coast.  

The digitization of the shoreline is both based on SPOT 5 image and or-
thophotographs data from BD ORTHO® (IGN, 2003):  

- The satellite image dated 2003/04/17 has 2.5 m resolution with a mul-
tispectral band (THR + XS) during low neap tide (tidal range: 114); 

- The BD ORTHO® is produced by the French National Mapping 
Agency (IGN) with aerial photography shot at a 1:25 000 scale in June 
2000. They are geometrically and orthogonally corrected with a Digital 
Elevation Model of the natural ground only (and not the superficial relief). 
The final product is a real colour picture, with a 50 cm spatial resolution 
and can be use at a scale of above 1:1 000. 

In addition, several detailed topographical surveys of shoreline section 
were made in order to compare the digitized shoreline to reference lines.  

These surveys were made at the same period than the Spot image acqui-
sition with a laser tacheometer or with a differential Global Positioning 
System (GPS), with a precision close to centimetre, on various parts of the 
coast (namely sand dunes, low height soft cliff, artificial coast, cobble 
ridge and shore). The station position was determined with georeferenced 
positioning points and the topographical survey fit with the plot of the 
shoreline inflexion point layout in a plan. 
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Fig. 7. Illustration of two different coastlines in estuary area. 

As described previously, the Hausdorff distance is not accurate for sinu-
ous lines like coastline (see Fig. 7), so Fréchet distance is used for this 
numerical comparison.  

5.2 Results: 

All the lines are resampled with a range equal to 0.5 meter. Empirically the 
distance accuracy is about 10 cm. The next tables summarize the results: in 
each cell, the first number is the discrete Fréchet distance and the second 
one between brackets is the average Fréchet distance, in meter. 
For the digitalization two scales were employed: 1:1500 (SPOT 5 1500) 
and 1:6000 (SPOT 5 6000). 

Table 4. Results for Artificial area 

 GPS Ortho 
SPOT 5 1500 14.01 (3.58) 15.75 (3.70) 
SPOT 5 6000 6.26 (2.37) 10.49 (2.67) 

Ortho 7.37 (1.77) × 

Table 5. Results for Cobble ridge 

 GPS Ortho 
SPOT 5 1500 3.39 (1.45) 5.13 (2.78) 
SPOT 5 6000 4.18 (2.01) 6.10 (3.28) 

Ortho 5.08 (1.82) × 
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Table 6. Results for Vegetated cliffs 

 GPS Ortho 
SPOT 5 1500 10.84(2.77) 12.20 (4.25) 
SPOT 5 6000 11.98 (4.54) 10.32 (6.07) 

Ortho 7.25 (2.8) × 

Table 7. Results for Shore area 

 GPS Ortho 
SPOT 5 1500 5.20 (1.22) 4.93 (1.67) 
SPOT 5 6000 3.90 (0.96) 4.97 (1.47) 

Ortho 5.38 (1.41) × 

Table 8. Results for Cliffs top 

 tacheometer Ortho 
SPOT 5 1500 3.78 (1.62) 3.84(1.10) 
SPOT 5 6000 6.07 (3.34) 6.43 (2.62) 

Ortho 3.10 (1.03) × 

Table 9. Results for Beach shoreline 

 tacheometer Ortho 
SPOT 5 1500 3.79 (1.17) 10.22(2.37) 
SPOT 5 6000 6.08 (2.25) 12.33 (4.14) 

Ortho 8.64 (2.1) × 
 
First of all, for all tables two kinds of discrete Fréchet distance discrep-

ancies are present: one upper to 10 meters (see Table 4 and Table 6), and 
a second in average of 6 meters.  

The discrepancy of ten meters could be explained either by a difference 
of interpretation between images and reality or changes in morphology 
(circle in Fig. 8). The second is mostly due to a problem of data resolution 
(see Fig. 8). Indeed, the digitization of points itself is an uncertain process. 
Even though we choose a precise scale to get the points, it’s impossible to 
be sure that the coordinates are correct (Harvey and Vauglin 1996). 

In artificial area (see Table 4) the surprising best digitalization at 
1:6000 than SPOT 5 1500 is only a consequence of a difference of inter-
preted features. Despite that, the best support remains orthophotographs 
(25% better than SPOT 5) due to its resolution which allow a better identi-
fication of build up areas. 
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The good results of average distance in “shore area” with satellite image 
(see Table 7) may be due to an evolution of the shore between 2000 and 
2003, the dates the orthophotographs and the Spot image have been ac-
quired. The same comment can be done for the cobble ridge (Table 5) and 
especially for the sand dune results (Table 9) 

The measures obtained for cliffs are not homogeneous: Table 6 gives a 
bigger Fréchet distance than Table 8. For “vegetated cliffs” the interpreta-
tions is disturbed, both with SPOT 5 or the orthophoto, by the vegetation 
that can mask the location of the de facto coastline. In comparison, “cliffs 
top” results (Table 8) show that orthophotographs are most convenient for 
the shoreline digitization. 

 

 
Fig. 8. Illustration of two kinds of errors: maximum Fréchet distance and average 
Fréchet distance. In the circle, the Fréchet distance between lines is bigger than 
between the reminder.  

To summarize, the global process application had demonstrated that 
SPOT 5 and the orthophotographs may be the support of the digitizing of 
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coastlines with comparable planimetric accuracy. Actually, these quanti-
fied results were really surprising as we felt during the whole experimenta-
tion process that the identification of coastlines was more difficult on Spot 
5 according to its lower spatial resolution. Indeed the results given by the 
program of discrete Fréchet distance show that SPOT 5 data are a relevant 
support for short term shoreline monitoring. This method can also be use-
ful for over type of data matching. For example, the different processes 
concerning the matching of different networks (road, hydrological, electri-
cal) present in (Mustière 2006), could be improved by an integration of 
this method. 

 

6 Discussion 

An important point of the research objectives is to extend the global 
process to the 3D. Thus future works tends to develop an integration 
matching method whatever the type of the Digital Elevation Model (DEM) 
is. The main issue is to solve the question of matching two DEMs in 
coastal area: by using matching surfaces between them, or forced lines ob-
tained with a DEM enhancement. 

In the context of seamless elevation model integration previous studies 
give a start point. In coastal domain, Gesch and Wilson (2001) propose an 
ad-hoc method which first converts each DEM in the same common verti-
cal reference. Then, after remove false old bathymetric points, a raster sur-
face model is produced from topographic and bathymetric points in the 
zero area elevation. Finally they merge the two first DEMs together using 
the third one to avoid interpolation edge effects. 

In the continental area, Podobnikar (2005) proposes to average each 
DEM cell. As the obtained DEM is smoother than the input DEM, he en-
hances the result with geomorphological feature such as land-marks, hy-
drological network, or land registry points. 

The problems with these methods are first a partial or total overlapping 
is required and second they didn’t take care of an eventual planimetric 
shift between cells. 

To solve that, a new method based on Fréchet matching must be de-
fined. One of the most interesting contributions could be to process a geo-
morphological enhancement after landscape segmentation in order to ob-
tain morphological forced lines. The landscape segmentation uses 
taxonomy of different land types: rock or reef formation, beach, estuaries, 
build up areas, and so on. For each type, main features of these relief ele-
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ments (equivalent to “forced line”) are determined as ridge, thalweg, line 
of slope break, roughness. 

Then the homologous force lines are identified and matched on each 
DEM. Finally, the distorted DEM are merged. 

This method gives the advantage of merging different coordinate cells 
with the consideration of the type of landscape. So it’s equivalent as mak-
ing an integration with adapted enhancement and merging method with a 
planar control, taking care planimetric shifts and not only according the al-
timetric shift. 

7 Conclusion 

In the context of data matching and quality control, the Fréchet distance, 
where a good approximation is the discrete Fréchet distance (dFd), is a 
relevant tool for measure differences. A new distance is also defined from 
it: The Average Fréchet Distance (daF). While the dFd represents the maxi-
mal gap somewhere between two homologous points of lines, daF gives the 
average difference whatever sinuosity. These two measures are comple-
mentary to control lines quality. Furthermore, a global process is imple-
mented in order to automatizes the matching process between two datasets. 

The coastline matching process was done with the discrete Fréchet dis-
tance as it’s the most appropriate tool to find sinuous homologous line, in-
stead of Hausdorff distance.  

In order to determine if SPOT 5 is a relevant tool for coastline mapping, 
we have implemented a program based on this method. The program gives 
a quantitative methodology to compare two chosen coastlines. The meas-
ures demonstrate that there is a good accuracy between SPOT data and ref-
erence data, despite a lower spatial resolution and temporal mismatch.  

As theses processes are appropriate to 2D data, further developments 
will extend the matching to 3D data, according to the type of relief in the 
coastal area. 
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